newspaper
flag
УкраїнськаУКР
flag
EnglishENG
flag
русскийРУС
img

Изобретён топливный элемент без мембраны

621
Изобретён топливный элемент без мембраны

Профессор Пол Кенис (Paul Kenis) из университета Иллинойса (University of Illinois at Urbana-Champaign) построил первый в мире щелочной топливный элемент без мембраны.

Видео дня

Топливные элементы, превращающие химическую энергию топлива непосредственно в электричество, обязаны своей работе именно мембранам. Они отделяют две камеры элемента, в которые подают топливо и окислитель.

Мембраны позволяют проходить из одной камеры в другую только протонам, которые получаются в результате расщепления водорода топлива, на электроде, покрытом катализатором (электроны при этом пробегают по внешней цепи). Во второй камере протоны воссоединяются с электронами (и атомами кислорода), образуя воду.

До сих пор именно так и строили топливные элементы. Но мембраны – это самая сложная и дорогая их деталь. К тому же, мембрана ограничивает химические возможности (в плане используемых видов топлива), так как не позволяет, к примеру, проходить через себя крупным гидроксидным ионам, которые в элементах на "щелочной химии" заменяют протоны.

Можно увеличивать размеры отверстий в мембране, но тогда она не сможет предотвращать смешивание жидкостей в двух камерах.

Кенис сумел обойти все эти ограничения, вообще избавившись от мембраны, казалось бы – ключевого узла любого топливного элемента. Тем самым, снизив и стоимость конструкции, и повысив её возможности.

Вместо мембраны он использовал способность жидкостей течь ламинарным потоком в тонких капиллярах.

В его устройстве два канала (для окислителя (это кислород, растворённый в воде) и для топлива) соединяются в форме буквы Y, где сечение общего канала не превышает полмиллиметра.

Оказалось, что если обеспечивать непрерывный входной поток, то топливо и окислитель продолжают течь рядом, практически не смешиваясь. Между тем их прямой контакт позволяет перескакивать из одного потока в другой как протонам, так и ионам.

Опытный топливный элемент Кениса (с размером 30 х 1 х 1 миллиметр) генерирует мощность в 0,25 ватт. Поскольку он принципиально может работать только в таких размерах, наращивание мощности (и напряжения) потребует параллельного и последовательного соединения большого числа таких устройств.

http://news.battery.ru